
Spontaneous Analogy by Piggybacking on a Perceptual System

Marc Pickett
NRC/NRL Postdoctoral Fellow

Washington, DC 20375
marc.pickett.ctr@nrl.navy.mil

David W. Aha
Navy Center for Applied Research in Artificial Intelligence

Naval Research Laboratory (Code 5510); Washington, DC 20375
david.aha@nrl.navy.mil

Abstract

Most computational models of analogy assume they are given a
delineated source domain and often a specified target domain.
These systems do not address how analogs can be isolated from
large domains and spontaneously retrieved from long-term
memory, a process we callspontaneous analogy. We present a
system that represents relational structures as feature bags. Us-
ing this representation, our system leverages perceptual algo-
rithms to automatically create an ontology of relational struc-
tures and to efficiently retrieve analogs for new relationalstruc-
tures from long-term memory. We provide a demonstration of
our approach that takes a set of unsegmented stories, constructs
an ontology of analogical schemas (corresponding to plot de-
vices), and uses this ontology to efficiently find analogs within
new stories, yielding significant time-savings over linearana-
log retrieval at a small accuracy cost.

1 Spontaneous Analogy
In our day-to-day experience, we often generate analogies
spontaneously (Wharton, Holyoak, & Lange, 1996; Clement,
1987). That is, with no explicit prodding, we conjure up
analogs to aspects of our current situation. For example, while
reading a story, we may recognize a plot device that is anal-
ogous to one used in another story that we read long ago.
The shared plot device may be a small part of each story, it
is usually not explicitly delineated for us or presented in iso-
lation from the rest of the story, and we may recognize the
analogy of the plot device even if the general plots of the two
stories are not analogous. Somehow, wesegmentout the plot
device andretrieve the analog1 from another story in long-
dormant memory.Spontaneous analogyis the process of ef-
ficiently retrieving an analog from long-term memory given
an unsegmented source domain such that part of the source
shares structural similarity with the analog, though they might
not share surface similarity. This process differs from stan-
dard models of analogy, which are given adelineatedsource
concept, and often a target concept. Given a pair of analogs,
analogical mapping is relatively straightforward. The more
difficult problem is finding the analogs to begin with. As
Chalmers, French, and Hofstadter (1992) argue “when the
program’s discovery of the correspondences between the two
situations is a direct result of its being explicitly given the
appropriate structures to work with, its victory in finding the
analogy becomes somewhat hollow”.

1In our terminology, ananalog is substructure of a domain that
is structurally similar to a substructure of another domain, and an
analogical schemais a generalization of an analog. For example,
an input domain might be the entire story ofRomeo & Juliet, an
analog would be the part of the story where Romeo kills Tybalt,
who killed Romeo’s friend, Mercutio (like inHamletwhere Ham-
let kills Claudius, who killed Hamlet’s father), and an analogical
schema would be the generalized plot device of a “revenge killing”.

Source

Target

(a) Mapping

Pterodactyls! Canyon

(b) Spontaneous Retrieval

Figure 1:An analog of Analogical Mapping vs. Sponta-
neous Analogy.In Analogical Mapping (a), we are given an
explicit source and target, free from interfering context.In
spontaneous analogy (b), the analogs are spontaneously re-
trieved from long-term memory.

The process of spontaneous analogy shares some proper-
ties with low-level perception, as exemplified in Figure 1.
Within seconds of being presented with a visual image of a
pterodactyl flying over a canyon, one can typically describe
the image using the word “pterodactyl”, even if one has had
no special explicit recent priming for this concept, indeed
even if one has not consciously thought about pterodactyls for
several years. For us to produce the word “pterodactyl”, we
mustsegmentthe pterodactyl from the canyon and retrieve the
“pterodactyl” concept from the thousands of concepts stored
in memory. We must have learned the “pterodactyl” concept
to begin with from unsegmented images. This perceptual pro-
cess is robust to noise: The pterodactyl in the image could be
partially occluded, ill-lit, oddly colored, or even drawn as a
cartoon, and we are still able to correctly identify this shape
(to a certain point). Likewise, many details of the plot devices
from the above story example could be altered or obfuscated,
but this analogy would degrade gracefully.

Our primary technical contribution in this paper is an algo-
rithm calledSpontol2 that solves the problem of spontaneous
analogy: efficient parsing, storage, and retrieval of analogs
from long-term memory. That is, given a corpus of many large
unsegmented relational structures, Spontol discovers analog-
ical schemas that are useful for characterizing the corpus and
efficiently retrieves analogs given a new structure. E.g., given
a set of narratives in predicate form, Spontol discovers plot

2Spontolis short for “spontaneous analogy using theOntol on-
tology learning and inference algorithm”.

3229

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 2013 2. REPORT TYPE

3. DATES COVERED
 00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
Spontaneous Analogy by Piggybacking on a Perceptual System

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,Center for Applied Research in Artificial
Intelligence (Code 5510),4555 Overlook Ave., SW,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
in Annual Conference of the Cognitive Science Society, Berlin, Germany, 31 Jul ? 3 Aug 2013.

14. ABSTRACT
Most computational models of analogy assume they are given a delineated source domain and often a
specified target domain. These systems do not address how analogs can be isolated from large domains and
spontaneously retrieved from long-term memory, a process we call spontaneous analogy. We present a
system that represents relational structures as feature bags. Using this representation, our system leverages
perceptual algorithms to automatically create an ontology of relational structures and to efficiently retrieve
analogs for new relational structures from long-term memory. We provide a demonstration of our
approach that takes a set of unsegmented stories, constructs an ontology of analogical schemas
(corresponding to plot devices) and uses this ontology to efficiently find analogs within new stories, yielding
significant time-savings over linear analog retrieval at a small accuracy cost.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

devices and analogs between the stories. We know of no prior
work that scales to this task when the number of narratives
and statements per narrative are both in the hundreds.

In the remainder of this paper, we describe related work
(Section 2), give background onperceptual systems(Sec-
tion 3), describe the Spontol algorithm, which transforms the
problem of spontaneous analogy into a “perceptual” problem
(Section 4), demonstrate Spontol’s performance on a story
database (Section 5), discuss implications and shortcomings
of Spontol, and conclude (Section 6).

2 Related Work

There has been earlier work on the problem of analogy in
the absence of explicitly segmented domains. The COWARD
system (Baldwin & Goldstone, 2007) addresses this prob-
lem by searching for mappings within a large graph, essen-
tially searching for isomorphic subgraphs. SUBDUE (Holder,
Cook, & Djoko, 1994) compresses large graphs by breaking
them into repeated subgraphs, but is limited in that its out-
put must be a strict hierarchy, and would be unable to dis-
cover the lattice structure of the concepts in Figure 2. Nauty
(McKay, 1981) uses a number of heuristics to efficiently de-
termine whether one graph is a subgraph of another, but this
must be given source and target graphs to begin with. We
can also apply The Chunker (described in Section 3) to fea-
ture bag graphlet kernels (Shervashidze, Vishwanathan, Petri,
Mehlhorn, & Borgwardt, 2009), which are related to Spon-
tol’s transformT in that both represent partial graphs, but this
earlier work applies only for cases where there is one kind of
entity, one kind of relation, and only binary relations, while
Spontol works for multiple kinds of entities and relations,in-
cluding relations of large arity.

The MAC phase of MAC/FAC (Forbus, Gentner, & Law,
1995) bears some relation to our spontaneous analog retrieval.
MAC uses vectors of content, such as the number of nodes
and edges in a graph, as a heuristic for analog retrieval. How-
ever, in cases where the subgraph in question is a part of a
much larger graph, the heuristics that MAC uses are drowned
out by the larger graph. Likewise, ARCS (Thagard, Holyoak,
Nelson, & Gochfeld, 1990) also assumes that analogs have
been delineated (i.e., it matches an entire source domain,
rather than a substructure).SEQL(Kuehne, Forbus, Gentner,
& Quinn, 2000) generalizes relational concepts, but doesn’t
build a hierarchical ontology of analogical schemas.

There has been some work on representing structures as
feature vectors. For example, Holographic Reduced Repre-
sentations have been used to implement Vector Symbolic
Architectures in which there is a correlation between vec-
tor overlap and structural similarity (Gayler, Levy, & Bod,
2009). This work is limited in that it requires vectors of length
10,000 to represent very small graphs (≤ 10 nodes), and only
represents binary relations of a single type, so this approach
is not directly extendable to relational structures such asthe
stories in our demonstration. This is also a limitation for the
system proposed by Rachkovskij, Kussul, and Baidyk (2012).

Both these systems are also limited in that they are unable to
exploit partial analogical schemas. That is, a partial overlap in
these systems’ vectors does not correspond to a common sub-
graph in the corresponding structures. These systems standin
contrast to Spontol, which is able to represent larger struc-
tures and efficiently find common substructures.

3 Background: Perceptual Systems
Spontol transforms relational structures into feature bags so
that their surface similarity corresponds to the structural sim-
ilarity of the relational structures. After Spontol has made
this transformation, the problem of spontaneous analogy is
reduced to the problem of feature overlap, and any of several
existing “perceptual” systems can be used to find and exploit
patterns in feature vectors. Our implementation of Spontol
uses a model inspired by the human sensory cortices (audi-
tory, visual, tactile) calledOntol (Pickett, 2011). Ontol is a
pair of algorithms, both of which are given “sensor” inputs
(fixed-length, real-valued non-negative vectors). The first al-
gorithm constructs an ontology that concisely encodes the in-
puts. For example, given a set of vectors representing visual
windows from natural images, Ontol produces a feature hi-
erarchy loosely modeled on that seen in the visual cortex.
The second algorithm takes as input an ontology (produced
by the first algorithm) and a new vector, andparsesthe vector.
That is, it produces as output the new vector encoded in the
higher-level features of the ontology. In addition to “bottom-
up” parsing, the second algorithm also makes “top-down”
predictions about any unspecified values in the vector.

Ontol is ignorant of the modality of its input. That is, Ontol
is given no information about what sensory organ is produc-
ing its inputs. Because of this ignorance, we are able to lever-
age Ontol to find patterns in abstract “sensory” inputs that are
actually encodings of relational structures.

Ontology Learning
Ontol’s ontology formation algorithm, calledThe Chunker,
seeks to find concepts (orchunks) that allow for concise char-
acterization of vectors. Since chunks themselves are vectors,
The Chunker is applied recursively to create an ontology. In
essence, this algorithm is similar to therecursive block pur-
suit algorithm described by Si and Zhu (2011) in that both
search for large frequently occurring sets of features. The
Chunker differs in that it allows for multiple inheritance,
while recursive block pursuit creates only strict tree struc-
tures. In Section 4, we show the importance of this prop-
erty for finding multiple analogical schemas within a single
relational structure. For simplicity, we describe the discrete
binary version of The Chunker algorithm (chunk(B), which
takes as input a setB of feature bags and produces an ontol-
ogy Ω) provided by Pickett (2011), but this can be modified
for continuous vectors. In this version, each vector is treated
as a set, with a value of 1 for featuref signifying inclusion of
f in the set, and a value of 0 signifying exclusion.

The Chunker searches for intersections among existing fea-
ture bags and proposes these as candidates for new concepts.

3230

Each candidate is evaluated by how much it would compress
the ontology, then the best candidate is selected and added
to the set of feature bags, and the process is repeated until no
candidates are found that further reduce the description length
of the ontology. Figure 2 shows the ontology constructed by
this algorithm when applied to an animal dataset, where the
“sensory percepts” are features for each animal3.

Figure 2:The Zoo Ontology with some instances.Instances
are individual animals shown on the left, and base features
are on the right. Black nodes in the middle correspond to
higher-level features. The concept that corresponds to “fish”
is marked. Inhibitory links are shown as dark circles.

Parsing and Prediction

Given an ontology and a new instance, Ontol’sparse(b,Ω)
algorithm characterizes the feature bag instanceb using the
higher-level features in the ontologyΩ. For example, given
a new animal (a goldfish) that doesn’t breathe, has fins, has
no feathers, and is domestic, Ontol will parse the animal as
an instance of thefish concept, with the exception that it is
domestic. If Ontol is given no other information about the
animal, it will also perform top-down inference, andunfold
the fish concept to predict that the new instance has eggs,
no hair, has a tail, etc.. This latter step is called “top-down
prediction”. Ontol searches for the parse that minimizes the
description length of the instance. In our goldfish example,
the “raw” description of the goldfish consists of 4 elements,
while the “compressed” description has only 2 elements.

3A full description and implementation of The Chunker, as well
as source code for our demonstration of Spontol can be downloaded
athttp://marcpickett.com/src/analogyDemo.tgz.

Although the parsing problem is NP-complete, a sin-
gle bottom-up pass can be performed in logarithmic time
(Pickett, 2011). Importantly, Ontol examines only a small
subset of the concepts and instances while parsing. This
means that, when judging concept similarity, Ontol does not
need to compare each of itsn nodes. This property is impor-
tant for spontaneous analog retrieval (described below).

4 Analogy as Perception
We now describe a method for transforming relational struc-
tures into sparse feature vectors (or feature bags) such that
the problem of analog retrieval is reduced to the problem of
percept parsing. An example of this process is shown for the
Sour Grapesfable in Figure 5. For this process, we rely on
a transformT (described below) that takes a small relational
structure and converts it into a feature bag (exemplified in
Figure 5(c)). The size of relational structure is limited for T
becauseT ’s runtime is quadratic in the size of the structure.
We view this limitation as acceptable because people gener-
ally cannot keep all the details of an entire lengthy novel (or
all the workings of a car engine) in working memory. Gen-
erally, people focus on some aspect of the novel, or some
abstracted summary of the novel (or engine). Therefore, we
break each large relational structure into multiple overlapping
windows. A window is a small set of connected statements,
where two statements are connected if they share at least one
argument. Spontol exploits a principle akin to one used by
the HMax model of the visual cortex (Riesenhuber & Poggio,
1999): as the number of windows for a relational structure
increases, the probability decreases that another structure has
the same windows without being isomorphic to the first.

The process for building an ontology of analogical schemas
from large relational structures, calledSpontol-Build, is de-
scribed in Figure 3. This algorithm extractsnumWindows
windows from each large relational structure and transforms
them into feature bags (exemplified in Figure 5(d)) and
chunks these feature bags to create an ontology of windows
called windowOntology. Spontol-Build then re-encodes the
windows by parsing them using this ontology, and re-encodes
the larger structures (from which the windows came) as a fea-
ture bag of the parsed windows. Finally,Spontol-Build runs
another pass of chunking on the re-encoded structures to gen-
erate the schema ontology.

The process of spontaneous analog retrieval, called
Spontol-Retrieve, is given in Figure 4. When given a new re-
lational structures, we encodes by extracting windows from
it, parsing these using thewindowOntology, then parsing the
feature bag representation using theschemaOntology. This
yields a set of schemas that are contained ins.

Transforming Small Relational Structures
Here, we describe an operationT, which transforms a (small)
relational structure into a feature bag. In our demonstra-
tion, we assume that the relational structure is described
in predicate logic, but our approach is not limited to this
representation. We consider a relational structure to be a

3231

Figure 3:Spontol’s Ontology Learning Algorithm
// Creates an ontology of schemas given a set of structuresS.
// numWindowsis the number of windows to grab per structure.
// windowSizeis the number of statements per window.
defineSpontol-Build (S,numWindows,windowSize)

// Randomly grab windows from each structure,
// and transform them into feature bag form.
foreach s∈ S ; for i = 1, · · · ,numWindows

let ws,i = grabConnectedStatements (s,windowSize)
add T

(

ws,i
)

to allWindows
// Run The Chunker to generate the window ontology
windowOntology= chunk (allWindows)
// Re-encode each structure using the reduced-size windows.
foreach s∈ S ; for i = 1, · · · ,numWindows

add parse
(

T
(

ws,i
)

,windowOntology
)

to bigWindowss
// Run The Chunker to generate the schema ontology.
schemaOntology= chunk (bigWindows)
return schemaOntology, windowOntology

Figure 4:Spontol’s Spontaneous Analogy Algorithm
// Finds analogical schemas for relational structures.
// schemaOntologyis the schema ontology.
// windowOntologyis the window ontology.
// numWindowsis the number of windows to grab per structure.
// windowSizeis the number of statements per window.
defineSpontol-Retrieve (s, · · · ,windowSize)

// Randomly grab windows froms,
// transform them into feature bag form,
// and parse them using the window ontology.
for i = 1, · · · ,numWindows

wi = grabConnectedStatements (s,windowSize)
add parse (T (wi) ,windowOntology) to bags

// Parsebags, the bag representation ofs
relevantSchemas= parse (bags,schemaOntology)
return relevantSchemas

set of relational statements, where each statement is either
a relation (of fixed arity) with its arguments, or the spe-
cial relationsameAs, which uses the syntaxsameAs <name>
(<relation> <arg1> <arg2> ...). The sameAs relation
allows for statements about statements. E.g., the statements
in Figure 5(b) encode (among other things) that “a foxde-
cides thatthe grapes are sour”.

Given a small relational structures (. 10 statements),
T transformss into a feature bag using a variant of con-
junctive coding. That is,T breaks each statement into a
set of roles and fillers. For example, the statementwant
Of3Fox Of3Grapes has two roles and fillers, namely the
two arguments of thewant relation. SoT breaks this state-
ment into want1=Of3Fox and want2=Of3Grapes, where
want2 means the 2nd argument ofwant (i.e., the “wanted”).
T then creates one large set of all the roles and their
fillers. If there are multiple instances of a relation, it
gives them an arbitrary lettering (e.g.,wantB1=Of3Fox).
T makes a special case for thesameAs relation. In this
case,T uses adot operator to replace the intermediate
variable. For example, the statementssameAs f35 (decide
Of3Fox f36) andsameAs f36 (sour Of3Grapes) would
yield decide2.sour1=Of3Grapes. The dot operator allows
T to encode nested statements (i.e., statements about state-

“A fox wanted some grapes, but could not get them. This caused
him to decide that the grapes were sour, though the grapes
weren’t. Likewise, men often blame their failures on their cir-
cumstances, when the real reason is that they are incapable.”

(a) English (for clarity)

fox Of3Fox cause m34 m33 sameAs f36 (sour Of3Grapes)
false f36 grapes Of3Grapes sameAs f35 (decide Of3Fox f36)
cause f34 f35 incapable Of3Men sameAs f34 (get Of3Fox Of3Grapes)
false f34 decide Of3Fox f36 sameAs m34 (incapable Of3Men)
men Of3Men sameAs m33 (fail Of3Men) blameFor Of3Men concCircum m33
fail Of3Men want Of3Fox Of3Grapes circumstances concCircum

(b) Predicate Form (Spontol’s actual input)

blameFor Of3Men concCircum m33
sameAs m33 (fail Of3Men)
fail Of3Men
circumstances concCircum
men Of3Men
incapable Of3Men

T
⇒

blameFor1=blameFor3.fail1
circumstances1=blameFor2
fail1=blameFor3.fail1
fail1=blameFor1
incapable1=blameFor3.fail1
incapable1=blameFor1
incapable1=fail1
men1=blameFor3.fail1
men1=blameFor1
men1=fail1
men1=incapable1

(c) Transforming a Window

blameFor1=blameFor3.fail1
circumstances1=blameFor2
fail1=blameFor3.fail1
fail1=blameFor1
incapable1=blameFor3.fail1
incapable1=blameFor1
incapable1=fail1
men1=blameFor3.fail1
men1=blameFor1
men1=fail1
men1=incapable1

false1.sour1=decide2.sour1
decide1=cause2.decide1
decide2=cause2.decide2
false1=cause2.decide2
false1=decide2

.....

cause2.fail1=blameFor3.fail1
blameFor1=blameFor3.fail1
blameFor1=cause2.fail1
cause2=blameFor3
fail1=blameFor3.fail1
fail1=cause2.fail1
fail1=blameFor1
men1=blameFor3.fail1
men1=cause2.fail1
men1=blameFor1
men1=fail1

blameFor1=blameFor3.fail1
fail1=blameFor3.fail1
fail1=blameFor1
incapable1=blameFor3.fail1
incapable1=blameFor1
incapable1=fail1
men1=blameFor3.fail1
men1=blameFor1
men1=fail1
men1=incapable1...

(d) Many Transformed Windows

Figure 5:Transforming the Sour Grapes Story. We show
the transformation ofSour Grapesfrom predicate form to fea-
ture bag form. For clarity, we show an English paraphrase of
the story (a), though the input to Spontol has already been
encoded in the predicate form shown in (b), which shows the
story as a set of 18 statements. In (c), we show a windoww
from the story and its feature bag transformT (w). Finally,
the story is represented as many transformed windows (d).

ments). Given a set of roles and fillers,T then chains the
fillers to getfiller equalities. For example, if we have that
decide1=Of3Fox and want1=Of3Fox, then chaining gives
us decide1=want1. Chaining is essential for recognizing
structural similarity between relational structures, andallows
us to side-step a criticism of conjunctive coding and ten-
sor products: that the code forwantB1=Of3Fox may have
no overlap with the code forwant1=Of3Fox (Hummel et
al., 2004). Chaining introduces the code forwantB1=want1,
which makes the similarity apparent when searching for
analogs (these “chained” features are a core difference be-
tween MAC’s content vectors and our feature bags). After

3232

chaining the roles and fillers,T treats each of these role-filler
bindings as an atomic feature. Note that, when we treat roles
and fillers as atomic features, Ontol doesn’t recognize over-
lap among feature bags unless they share exactly the same
feature. For example, the atomic featurewantB1=Of3Fox has
no more resemblance towant1=Of3Fox for Ontol than it does
for any other feature. Also note that the ordering of the roles
in each feature is arbitrary but consistent (T uses reverse al-
phabetical order), so there is amen1=incapable1 feature, but
not anincapable1=men1 feature. The left side of Figure 5(c)
shows a window taken from the sour grapes story from Figure
5(b). On the right side is the feature bag transform of this set
of 6 statements, consisting of 11 atoms.

5 Demonstration

We applied Spontol to a database of 126 stories provided by
Thagard et al. (1990). These include 100 fables and 26 plays
all encoded in a predicate format, where each story is a set
of unsorted statements. An example story in predicate form is
shown in Figure 5(b). Note that although the predicates and
arguments have English names, our algorithm treats all these
as gensyms except for the specialsameAs relation. In this en-
coding, the smallest story had 5 statements, while the largest
had 124 statements, with an average of 39.5 statements.

We ranSpontol-Build on these stories usingnumWindows=
100 andwindowSize= 20 which produced an ontology of sto-
ries, part of which is shown in Figure 6. In this figure we see a
“Double Suicide” analogical schema found in bothRomeo &
Juliet and inJulius Caesar. In the former, Romeo thinks that
Juliet is dead, which causes him to kill himself. Juliet, who
is actually alive, finds that Romeo has died, which causes her
to kill herself. Likewise, inJulius Caesar, Cassius kills him-
self after hearing of Titinius’s death. Titinius, who is actually
alive, sees Cassius’s corpse, and kills himself. The largest
schema found (in terms of number of outgoing edges) was
that shared byRomeo & JulietandWest Side Story, which are
both stories about lovers from rival groups. The latter doesn’t
inherit from the Double Suicide schema because Maria (the
analog of Juliet), doesn’t die in the story, and, Tony (Romeo’s
analog) meets his death by murder, not suicide. Some of the
schemas found were quite general. For example, the oval on
the lower right with 6 incoming edges and 3 outgoing edges
corresponds to the schema of “a single event has two signifi-
cant effects”. And the oval above the Double Suicide oval cor-
responds to the schema of “killing to avenge another killing”.

Spontol-Retrieve uses this schema ontology to efficiently
retrieve schemas for a new story, which can be used to make
inferences about the new story in a manner analogous to
the “goldfish” example from Section 3. To evaluate the ef-
ficiency of Spontol-Retrieve, we randomly split our story
dataset into 100 training stories and 26 testing stories. We
then used an ontology learned from the training set, and mea-
sured the number of comparisons needed to retrieve schemas
(duringparse) for the testing set. We compare this approach
to MAC/FAC, which, during the MAC phase, visits each of

Figure 6:Part of the ontology Spontol learned from the
story dataset. As in the Zoo Ontology in Figure 2, black
ovals represent higher level concepts. The “raw” features
(corresponding to the white ovals in Figure 2) are omitted
due to space limitations. Instead, we show the outgoing edges
from each black oval. While in the Zoo Ontology, the higher
level concepts correspond to shared surface features, in this
figure, high level concepts correspond to shared structural
features, oranalogical schemas. For example, the highlighted
oval on the right represents aDouble Suicideschema, which
happens in bothRomeo & Julietand inJulius Caesar.

the 100 training stories. Whereas MAC/FAC returns entire
stories,Spontol-Retrieve returns analogicalschemas(just as
a visual system would return a generic “pterodactyl” con-
cept rather than specific instances of pterodactyls). For com-
parison, we modifySpontol-Retrieve to return the set of in-
stances that inherit fromrelevantSchemas, rather than just the
schemas.

Table 1:Speed/Accuracy Comparison of Spontol

Accuracy Average # Comparisons
MAC/FAC 100.00%± .00% 100.00± .00
Spontol 95.45%± .62% 15.43± .20

Results are shown in Table 1, averaged over 100 trials. We
show accuracy (and standard error) for both systems mea-

3233

sured as the percentage of stories correctly retrieved, where
a story was determined to be correct if it was retrieved by
MAC/FAC. Spontol effectively improves on a linear (in the
number of structures) case-by-case comparison to an “in-
dexed” logarithmic-time look-up at a slight cost of accu-
racy. Therefore, Spontol requires orders of magnitude fewer
comparisons than MAC/FAC,or any linear look-up algo-
rithm (for a survey, see (Rachkovskij et al., 2012)). For larger
datasets, we hypothesize that these differences will be even
more pronounced. Although each comparison by both MAC
andSpontol-Retrieve is a fast vector operation, for very large
datasets (e.g., 109 relational structures), even a linear num-
ber of vector operations becomes impractical. In future work,
we will test these systems on a broader range of relational
datasets to help elucidate the conditions under which Spontol
yields high accuracy and very-low retrieval cost.

6 Conclusion

The chief contribution of this paper is a demonstration of a
system, Spontol, that is able to solve the problem of sponta-
neous analogy. That is, we have demonstrated how Spontol
can efficiently store and retrieve analogs without the need of
human delineation of schemas.

Our representation also offers a new solution for thebind-
ing problemfor long-term (static) memory that allows for ef-
ficient analog retrieval in the absence of explicitly segmented
domains. The binding problem asks how we can meaning-
fully represent bindings between roles and fillers. Most solu-
tions to the binding problem in connectionism do so in terms
of temporal synchronicity (e.g., LISA (Hummel & Holyoak,
2005)). Temporal synchronicity only works for knowledge in
workingmemory, and these models typically address storage
in long-term memory by relying on some form of conjunc-
tive coding or tensor products. Though these systems fail to
address how relational structures can be efficiently retrieved
from long-term memory, we hypothesize that a working-
memory system, such as LISA, is necessary for the “chain-
ing” process on which our system relies.

Spontol may offer evidence in support of a uniform “sub-
strate” of intelligence (Mountcastle, 1978). In particular,
we’ve shown how a system that was designed to process per-
ceptual data (Ontol) can be leveraged to process “symbolic”
data (i.e., relational structures). This may provide insight into
how species capable of higher-order cognition might have
evolved from species capable of only low-level perception.

Although Spontol addresses some outstanding problems
in Computational Analogy, there is still ample room for fu-
ture work. Our implementation for characterizing a relational
structure as a set of windows might not scale well to very
large structures without some modifications. An open prob-
lem is how windows might be managed in a sensible way.
Spontol currently uses “bags of windows” for medium-sized
structures. We propose extending Spontol by allowing hier-
archies of progressively higher-order bags to represent larger
structures (e.g., bags of bags of bags of windows).

References
Baldwin, D., & Goldstone, R. L. (2007). Finding Analogies

Within Systems: Constraints on Unsegmented Matching. In
WrkShp. on Analogies: Integrating Multiple Cog. Abilities.

Chalmers, D. J., French, R. M., & Hofstadter, D. (1992).
High-level Perception, Representation, and Analogy: A
Critique of Artificial Intelligence Methodology.J. Exp.
Theor. Artif. Intell., 4(3), 185-211.

Clement, J. (1987). Generation of Spontaneous Analogies
by Students Solving Science Problems. InThinking Across
Cultures(p. 303-308).

Forbus, K., Gentner, D., & Law, K. (1995). MAC/FAC: A
Model of Similarity-based Retrieval.Cog. Sci., 19(2).

Gayler, R., Levy, S., & Bod, R. (2009). A Distributed Ba-
sis for Analogical Mapping. InNew Frontiers in Analogy
Research; Proc. of 2nd Intern. Analogy Conf.(Vol. 9).

Holder, L., Cook, D., & Djoko, S. (1994). Substructure Dis-
covery in the SUBDUE System. InWorkshop on Knowl-
edge Discovery in Databases.

Hummel, J. E., & Holyoak, K. J. (2005, June). Relational
Reasoning in a Neurally Plausible Cognitive Architecture:
An Overview of the LISA Project.Current Directions in
Psychological Science, 14(3), 153–157.

Hummel, J. E., Holyoak, K. J., Green, C., Doumas, L. A. A.,
Devnich, D., Kittur, A., et al. (2004). A Solution to the
Binding Problem for Compositional Connectionism. In
AAAI Fall Symp. on Comp. Connectionism in Cog. Sci.

Kuehne, S., Forbus, K., Gentner, D., & Quinn, B. (2000).
SEQL: Category Learning as Progressive Abstraction Us-
ing Structure Mapping. InProceedings of the 22nd Annual
Meeting of the Cognitive Science Society.

McKay, B. (1981). Practical Graph Isomorphism.Congres-
sus Numerantium, 30, 45-87.

Mountcastle, V. (1978). An Organizing Principle for Cerebral
Function: The Unit Model and the Distributed System.

Pickett, M. (2011).Towards Relational Concept Formation
From Undifferentiated Sensor Data. Doctoral dissertation,
University of Maryland Baltimore County.

Rachkovskij, D., Kussul, E., & Baidyk, T. (2012). Build-
ing a World Model with Structure-Sensitive Sparse Binary
Distributed Representations.Bio. Inspired Cog. Archs..

Riesenhuber, M., & Poggio, T. (1999). Hierarchical Mod-
els of Object Recognition in Cortex.Nature Neuroscience,
2(11), 1019–1025.

Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K.,
& Borgwardt, K. (2009). Efficient Graphlet Kernels for
Large Graph Comparison. InInt. Conf. on AI & Stats.

Si, Z., & Zhu, S. (2011). Unsupervised Learning of Stochas-
tic AND-OR Templates for Object Modeling. InIEEE Int.
Conf. on Computer Vision Workshops(pp. 648–655).

Thagard, P., Holyoak, K., Nelson, G., & Gochfeld, D. (1990).
Analog Retrieval by Constraint Satisfaction.Artificial In-
telligence, 46(3), 259–310.

Wharton, C., Holyoak, K., & Lange, T. (1996). Remote Ana-
logical Reminding.Memory & Cognition, 24(5), 629–643.

3234

